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a b s t r a c t

Periodically stiffened shell structures are widely used due to their excellent specific
strength, in particular for aeronautical and astronautical components. This paper presents
an improved Wave Finite Element Method (FEM) that can be employed to predict the
band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing,
which is a typical periodically stiffened shell structure, was employed to verify the vali-
dation and efficiency of the Wave FEM. Good agreement has been found between the
Wave FEM and the classical FEM for different boundary conditions. One effective wave
selection method based on the Wave FEM has thus been put forward to filter the radial
modes of a shell structure. Furthermore, an optimisation strategy by the combination of
the Wave FEM and genetic algorithm was presented for periodically stiffened shell
structures. The optimal out-of-plane band gap and the mass of the whole structure can be
achieved by the optimisation strategy under an aerodynamic load. Results also indicate
that geometric parameters of stiffeners can be properly selected that the out-of-plane
vibration attenuates significantly in the frequency band of interest. This study can pro-
vide valuable references for designing the band gaps of vibration isolation.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Thin shell structures have been widely used to reduce weight for modern mechanical systems, in particular for aero-
nautical and astronautical components Stiffeners are usually employed to improve the mechanical behaviour of thin shell
structures, via forming a higher specific-strength structure, however, a stiffened shell structure is still susceptible to vibration.
It is always difficult to suppress vibration due to natural modes inherent to the structure, in particular in the high frequency
range. In engineering applications, the intense resonance may occur due to vibration and lead to severe hazards to machines
[1e3].

In recent decades, a considerable amount of studies have been reported on the vibration control of periodic structures
based on their band-gap properties. Due to the spatial periodicity, a “filtering” phenomenon arises in periodic structures,
where vibration waves can propagate freely in pass bands, but attenuate sharply in band gaps [4]. In the open literature,
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Nomenclature

K Blade number
kx Wavenumber in x direction
ky Wavenumber in y direction
ka Wavenumber in a direction
k Wave vector
Da circumferential dimension for unit cell of the cylinder model
Dy Axial dimension for unit cell of the cylinder model
l Propagation constant
u Angular frequency
U Nondimensional frequency
L Length of the structure
G Kinetic energy
tc Thickness of the shell
ts1 Width of the circumferential stiffeners
ts1 Width of the axial stiffeners
hs1 Height of the circumferential stiffeners
hs2 Height of the axial stiffeners
R Radius of the shell
q Vector for Nodal displacement
F Vector for Nodal force
K Stiffness matrix
M Mass matrix
К Vibration energy proportion of different directions
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characterisation of vibration band gaps in periodic structures, including beams, grids [5], plates [6] and laminated shells
[7] has been examined. The vibration characteristics of free modes for a periodically stiffened shell structure with
different configurations have also been investigated in Ref. [8]. Mead and his collaborators [9e11] studied different
configurations of stiffeners, e.g. circumferential, axial and orthogonal stiffeners. The band-gap characteristic was plotted
by the 3D phase constant surface which is the embryo of the 2D dispersion curve used nowadays. Considering the
limitation of the early-stage mathematical calculation method and the oversimplification given to a real structure, more
accurate methods and models were put forward later to improve the prediction accuracy. The Wave FEM was proposed in
Refs. [7,12,13] that was capable of predicting the wave motion in a two-dimensional periodic structure with acceptable
accuracy and negligible computational cost. However, only the boundary curvature of the structure was considered in the
original Wave FEM, which limits the prediction accuracy on vibration modes. Thus, improvements are imperative for the
application of the Wave FEM to more complicated structures, e.g. a periodically stiffened shell, which is studied in this
paper.

The open-literature studies mentioned above aid in understanding the periodicity of shell structures from various
points of view, however, little attention has been paid to the effect of excitation direction on vibration response, which is
significant in engineering applications. For instance, the casing of an aero-engine, which normally features a thin stiff-
ened shell structure, mainly undertakes radial aerodynamic loads due to the rotation of fan blades [14], thus usually
showing the radial vibration with a high amplitude. The radial aero dynamical load always features a high frequency with
an order of K times as large as the rotation speed, where K refers to the number of blades near to the casing. Moreover, it
is quite difficult to get the global band-gap characteristics for the stiffened shell, which implies that specific or local band
gaps may need to be defined. Mead [11] figured out that the bending mode band gaps may exist, which provided a
strategy to classify the band gaps by directions. Bennet and Accorsi [15] made some attempts by placing capital letters
above each pass band to indicate the directions of maximum displacements (radial, axial or tangential). However, the
judgement criterion is rather subjective and only suitable for qualitative insight, and the influence of the curvature was
also neglected. This means that a quantitative and objective method is required to select the out-of-plane wave modes.
Thus, a mode selection approach based on vibration energies associated with different modes is proposed and validated
in this paper.

One objective of this article is to propose an improved Wave FEM which can auto-select the mode shapes of interest, thus
providing a reference for the practical application of the vibration isolation design for a stiffened shell structure. The out-of-
plane mode shapes and high-frequency aero dynamical load in Engineering are of interest, e.g. from 2500Hz to 4000 Hz. The
improved Wave FEM is presented and the optimisation design based on the Genetic algorithm (GA) is adopted, leading to a
fan casing with minimumweight and desired band-gap characteristics. Section 2 reviews the relevant wave concepts. Section
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3 provides the wave selection method based on Wave FEM and vibration energies of different directions; the viability is
verified both for Wave FEM and classic FEM. The optimisation algorithm for interested band gap and minimum weight is
described in Section 4. Finally, conclusions are emphasized in Section 5.
2. Wave theory and wave FEM

2.1. Bloch theorem and Brillouin zone

Bloch's theorem was established by Felix Bloch, to depict the electrical conductivity of metals from the viewpoint of
quantum mechanics [16]. It was originally invented to describe the motion of electrons in a periodic lattice field, but it was
later extended to investigate elastic waves in a structure [5e7]. The joints of any lattice structure in the solid state physics can
be envisioned as a collection of lattice points and associated with a set of basic vectors, which can be regarded as particles and
position vector in the engineering structure. In a two-dimensional periodic space, the motion of a particle could be expressed
as:

uðrÞ ¼ ukðrÞeik$r;uðrþ RÞ ¼ uðrÞ (1)

where r is the position vector; R is the translation vector of a unit periodic cell; k is the wave vector of the plane wave; u(r) is
the wave vibration displacement. R can be decomposed into basic vectors ai:

R ¼ n1a1 þ n2a2 (2)

where n1 and n2 are two integers, the integer pair (n1,n2) identifies any other periodic cell obtained by n1 translations along
the a1 direction and n2 translations along the a2 direction. A periodic stiffened plate structure and corresponding basic vectors
a1 and a2 are shown in Fig. 1.

To figure out the physic mechanism and obtain the band gaps in vibration problem, we describe the vibration issue from
thewave propagation aspect, which can be easily discussed in the reciprocal lattice.We also use the definitions of wave vector
and wave propagation constant m to explain the mathematical process. The analysis of band gaps always exists in the
reciprocal lattice [17]. It is convenient to define the reciprocal lattice in the wave vector space. Through the Fourier transform,
the basic vectors of the direct and reciprocal lattice satisfy:

ai$bj ¼ 2pdij (3)

where ai and bj denote the basic vectors associated with the direct lattice and the reciprocal lattice, respectively. dij is the
Kronecker delta function. The reciprocal lattice is also periodic and the unit cell in reciprocal lattice is defined as Brillouin
Zone. One can only restrict the wave vector in the first Brillouin Zone to characterise all the band-gaps. In particular,
considering the symmetry of the zone, only the edge of the irreducible part needs to be considered to increase the
computational efficiency. The typical first Brillouin Zone and its irreducible part of a square planer lattice are shown in Fig. 2,
where a is the length of the unit cell in the direct lattice. Considering the irreducible part, only the wavenumbers kx and ky in
0~p/a are considered here.
Fig. 1. The periodic stiffened plate structure.



Fig. 2. Brillouin Zone in two-dimensional space.
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2.2. Wave FEM

Wave FEM [7] is an effective method to calculate the band-gap characteristics. The basic concept of Wave FEM comprises
following three steps: i) the mass and stiffness matrices of the FE model of a unit cell are obtained by the classical FE method,
which can be accomplished by a commercial FE package; ii) the periodic boundaries regarding displacements and forces are
applied to the unit cell based on Bloch's Theorem; and iii) the eigenfunction problem is solved to obtain the band-gap
characteristics.

The governing equation of the unit cell can be written as:

�
K� u2M

�
q ¼ F (4)

where the damping matrix is neglected; K andM are the stiffness and mass matrices; q and F are the nodal displacement and
force vectors respectively; u is the frequency of interest. For the shell structure studied here, it is convenient to describe its
deformation in a cylindrical coordinate system. Considering a two-dimensional periodic shell structure, the time harmonic
disturbance corresponding to the frequency u and the nodal displacement of the jth node in a cylindrical coordinate can be
expressed as:

q
�
rj; t

� ¼ qjeðiut�ka$Da�ky$DyÞ (5)

where qj is the wave amplitude; ka and ky are the projections of the physical wavenumbers in the a and y directions,
respectively. The cylinder with a radius of R and a thickness of h is given in Fig. 3 (a), while its unit cell is illustrated in Fig. 3 (b).

As illustrated in Fig. 4, for a two-dimensional periodic structure, the nodes of its unit cell can be partitioned into 9 parts:

q ¼ ½qi ql qlb qlt qb qt qr qrb qrt �H (6)

where the superscript H denotes the operator of transpose and the subscripts i, l, r, b and t correspond to the internal, left,
right, bottom and top nodes.

Using Bloch's theorem, the periodic boundaries can be expressed as:

qr ¼ laql;qt ¼ lyqb;
qlt ¼ lyqlb;qrb ¼ laqlb;qrt ¼ lalyqlb;
Fr ¼ �laFl; Ft ¼ �lyFb;
Frt þ laFlt þ lyFrb þ lalyFlb ¼ 0

(7)
where la and ly satisfy la ¼ e�ikaDa; ly ¼ e�ikyDy, the nodal displacements and forces can be rearranged as:
Fig. 3. Illustration of a cylinder model, (a) the isotropic cylinder model and (b) the unit cell.



Fig. 4. A two-dimensional unit cell.
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In the combination of Eq. (4), Eq. (8) and Eq. (9), the governing equation for u or la and ly can be determined as:

�
K� u2M

�
qred ¼ 0 (10)

where the reduced stiffness matrix K and the mass matrix M can be calculated using:
K ¼ Q lKQ r;M ¼ Q lMQ r (11)

and the nodal displacement matrix qred is:
qred ¼ ½qi ql qlb qb �H (12)
For a cylinder, due to the closure of its geometry along its circumferential direction, thewavenumber ka corresponds to the
circumferential mode number n, which can only take the integers of 0, 1, 2 …

The computational procedure adopted to calculate the dispersion curves (band structure) for the stiffened shell is as
follows.

(1) Select a unit cell of the shell as shown in Fig. 5 (b) and build the FE model in ANSYS.
(2) Classify the nodes of the unit cell according to the rule described in Fig. 4
(3) Rotate the nodal local coordinate (where the FE model is obtained) from the default Cartesian coordinate to the cy-

lindrical coordinate and obtain the mass and stiffness matrices of the unit cell in ANSYS directly.



Fig. 5. Numerical models of (a) the orthogonally stiffened cylinder and (b) its unit cell.
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(4) Rearrange the mass and stiffness matrices as the order in Eq. (6) by the information we obtained in step (2).
(5) Apply the Wave FEM (Bloch's principle described in Eq. (7)) in MATLAB to the equation of motion for one unit cell and

form the eigenvalue problem in Eq. (10).
(6) Solve the resulting eigenvalue problem in for the wave propagation frequencies or the wave propagation constants and

construct the dispersion curves.

Above procedure can be applied for all the periodic structures and obtained the band-gap characteristics effectively. Mace
[7] presented a specific method based on the Wave FEM for the isotropic cylinder, the difference from the Wave FEM in this
paper is the nodal local coordinate for the mass and stiffness matrices. In step (3), Mace obtained the matrices in the default
Cartesian coordinate and adopted a simplified coordinate transfer matrix to model the desired curvature. The internal nodes
were neglected, thus it can not be used in the complex periodic shell for the accurate wave mode estimation.

3. Wave selection

It is well known that vibration amplitudes of an engineering component are affected by a number of factors, including the
excitation frequency, the excitation location, the excitation amplitude and the excitation direction. A shell component in
service is more susceptible to out-of-plane vibration, which implies that the excitation direction usually follows the radial
direction of the shell structure. This is in particular true for an aero engine casing, which usually experiences out-of-plane
vibration due to unstable aerodynamic loads. Therefore, one objective of this study was to achieve out-of-plane vibration
modes using the Wave FEM, which was also motivated by improvements on the prediction efficiency.

3.1. Method

In the cylindrical coordinate system, the out-of-plane motion of the shell can be considered to be radial vibration
dominated, while the in-plane motions are attributed to longitudinal and torsional vibration.

The stiffened shell comprises two parts, i.e. the uniform shell and stiffeners. As emphasis is placed on the overall vibration
of thewhole structure, the local vibration of stiffeners needs to be excluded from the overall vibration, since it may disturb the
judgement of wave modes. In this wave selection method, vibration energy is divided by the vibration direction and only the
shell energy is taken into account for the analysis and judgement, while the vibration performance includes both shell and
stiffeners. Thus, the band-gap characteristics exist in thewhole stiffened shell. Recalling to section 2, the displacements of the
nodes associated with the unit cell can be expressed as:

q ¼ �
qi ql qlb lyqlb qb lyqb laql laqlb lalyqlb

�H (13)

which indicates the deformation information of the structure. By removing the vibration associated with the stiffener nodes,

the kinetic energy of the shell G can be ex pressed by:

Gj ¼
1
2

��
iuqsj

�H
Ms

�
iuqsj

�	
ðj ¼ a; r; yÞ (14)

where the subscripts s represents the shell, a, r and y indicate the circumferential, radial and axial directions, respectively. The

contributions by different directions of vibration to the overall kinetic energy can be defined as:

kj ¼




Gj

G





� 100%ðj ¼ a; r; yÞ (15)
Accordingly, кr>50% implies that it is an out-of-plane vibration dominated case.
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3.2. Verification

The Wave FE model of the orthogonally stiffened cylinder studied here is shown in Fig. 5.
It's originated from the real casing structure of the aero-engine. For the requirement of the manufacture process of the

aero-engine, the stiffened casing structure is firstly obtained as a rough cast, and further milling is necessary. The stiffeners
are continuously bounded to the skin in the simulation process since the same elements and shared nodes are adopted which
match the practical engineering issue well. The specific modelling method is described in the following section 3.2.2.

The geometry parameters of the numerical model are given in Table 1 in a non-dimensional form relative to the shell
thickness tc. Table 1 also gives material parameters used in the wave FE model.

The band-gap characteristics analysis and periodic boundary conditions of the unit cell are originated from the infinite
periodic structure. Thus the periodic number is assumed as infinite. However, in the practical engineering, the periodic
number is limited to a finite number. The vibration band gap obtained by one unit cell in infinite structure performs as the
vibration attenuation of the finite structure in the same frequency range. And the attenuation ability grows with the periodic
number. Thus, sufficient periodic number should be guaranteed in the finite structure, to reach the effective vibration
isolation. The circumferential and axial periodic number are given at 18 and 8, respectively. The geometric parameters Da and
Dy of the unit cell are 20�and 84.7mm, respectively. Considering the irreducible part of the first Brillouin zone, the
circumferential wavenumbers ka can be restricted at the integers of 0, 1, 2 …, 9.

3.2.1. Wave FEM results
The strong evanescent waves that are present only around the discontinuous points of the structure, such as the excitation

points and boundaries are ignored here. The propagation constant ly is considered to have a value in the close interval of [0,1].
The dispersion curve obtained by the Wave FEM for ka¼ 0 is shown in Fig. 6.

U is the non-dimensional frequency defined as U¼u/ur, where:

ur ¼ 1=R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
r
�
1� n2

�q
(16)
Table 1
Geometry and material parameters of the orthogonally stiffened cylinder.

tc (mm) H1 (ts1/tc) H2 (ts2/tc) H3 (hs1,2/tc) H4 (R/tc) H5 (Axial period) H6 (circumferential period) Р (kg/m3) E (GPa) n

5 4 4 8 150 8 18 7780 206 0.27

Fig. 6. The dispersion curves of the stiffened cylinder (a) without wave mode selection and (b) with wave mode selection.
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ur is the ring frequency, which is 1094.9 Hz in this example. The dispersion curves obtained before and after the wave
mode selection are respectively presented in Fig. 6 (a) and (b). The triangular symbols represent the attenuationwaves which
correspond to the complex, where dots indicate the propagation waves which correspond to the pure imaginary wave-
numbers while the wavenumbers. It can be seen from Fig. 6 (b) that after the wave mode selection there exist two global out-
of-plane band gaps in the frequency range of interest. One is located in the low frequency range (LF) at 0e870.1 Hz and the
other one is located in the middle-high frequency range (MF/HF) at 2868.5e3470.7 Hz, which are highlighted by band gap 1
and band gap 2 in Fig. 6(b), respectively. Fig. 6(a) also shows that there is not such a global band gap without the wave mode
selection, albeit a local band gap may exist between two specific wave modes.

Fig. 7(a) shows the out-of-plane (radial) deformation of the shell, which was retained after the wave selection procedure,
while Fig. 7(b) presents the in-plane (circumferential) deformation of the shell, whichwas eliminated after thewave selection
procedure. From the physical point of view, the wave selection method emphasizes the strain energy proportion in different
directions, therefore it can figure out the concerned vibration modes according to the actual engineering needs.

3.2.2. ANSYS results
The frequency response (FR) curves of vibration can describe the band-gap characteristics of the finite structure more

intuitively. A finite cylindrical shell relating to a real aero-engine fan casing was modelled in the commercial FE package
ANSYS. SHELL181 elements are used for developing the wave finite element model which cover the curvature characteristic
well. The element is 3D, quadrilateral and four-node shell element with six degrees of freedom on each node, thus having
bending and membrane capabilities. It is suitable for analyzing thin and moderately-thick shell structures. The Mindlin-
Reissner theory is adopted to describe both the skin and ribs which considers the shear deformation of the structure.
However, there are two main assumption and restrict for this element:

1. Shear deflections are included in the element, however, normals to the center plane before deformation are assumed to
remain straight after deformation.

2. Transverse shear stiffness of the shell section is estimated by an energy equivalence procedure. The accuracy of this
calculation may be adversely affected if the ratio of material stiffness (Young's moduli) between skin and ribs is very high.
In our study, only one material is considered.

There were 11520 SHELL181 elements to model both the shell and stiffeners, as shown in Fig. 8(a). The geometric pa-
rameters shown in Table 1 were also used in the ANSYS model, and the axial length L is given as 677.23mm, i.e. 8 periods
along the axial direction. The simulation model is isotropic and continuous which matches the practical manufacturing
process well. To study the influence caused by the boundary condition of the finite structure, both free-free boundary and
free-clamped boundary were considered for two sides of the shell. The harmonic load was applied on all the left-edge nodes
of the casing in the radial direction, as Fig. 8(b). The radial displacement responses at two positions, i.e. the middle and right
edges of the casing, were taken into account after the harmonic calculation. For the free-clamped boundary, we take the
response from the nodes next to the right side.

The FR curves extracted at two positions of the stiffened shell structure under two different boundary conditions are
presented in Fig. 9. At the free-clamped boundary condition, all the degrees of right-side nodes are constrained, thus the FR is
taken from the near node of the right side. The amplitude variations of these four FR curves demonstrate apparent differences,
in particular between these two FR curves extracted at the right edge of the shell. However, there are minor differences
between these two boundary conditions regarding the vibration band-gap locations in the frequency domain. They both
show a low-frequency band gap at 0e935.5 Hz (Band gap 1 in Fig. 9) and a high-frequency band gap at 2915.2e3465.8 Hz
(Band gap 2 in Fig. 9), which were also obtained by the Wave FEM. Thus, good agreements have been observed between the
Wave FEM and the ANSYS simulation regarding the band gaps.
Fig. 7. Shell deformation due to (a) the retained wave modes in radial direction and (b) the removed wave modes in circumferential direction.



Fig. 8. (a) Finite element model of a periodically stiffened shell structure, and (b) the load applied on the left-edge nodes.

Fig. 9. The frequency response curves for the stiffened shell under (a) free-free boundary and (b) free-clamped boundary.
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The contour maps for the out-of-plane strain of specific wave modes under the free-free boundary are given in Fig. 10.
Fig. 10 (a) and (c) are the wave modes in the frequency range associated with the band gap 1 and band gap 2, respectively. It
can be observed that these two wave modes prevail only near the exciting position. The wave modes out of the band gaps in
Fig.10 (b) and (d) spread throughout thewhole structure, hence leading tomore severe vibration of the shell in comparison to
the aforementioned wave modes both in the band gap1 and band gap 2.

The free mode of the shell was also analyzed in ANSYS. Fig. 11 shows the displacement contour map for the first out-of-
plane vibration mode at the natural frequency of 926.6 Hz, which is quite close to the upper cut-off frequency of the gap
band 1.

Wave propagation characteristics underlie the vibration and acoustic performance of a structure. The related rising
research field concerning the periodic structures is a typical issue mainly based on the wave theory, the key of wave theory is
the Bragg scattering of the vibration wave happens near the periodic boundary, thus the vibration in the specific frequency
range can be isolated. The wave-based methods can, at least in theory, lead to the same result for a structural dynamical
problem as the conventional mode based methods [18], and this equivalence is termed “wave-mode duality” in the literature
[19e21].

In comparison to the traditional mode-based method, the wave-based method shows advantages regarding treatments of
mid- and high-frequency problems. The latter can remarkably reduce the problem dimensions, achieve the band-gap features
and conveniently explain corresponding physical mechanisms.

4. Numerical optimisation

The wave selection strategy proposed above was further employed to investigate the optimisation design of a periodically
stiffened shell structure, in the combination of the classical genetic algorithm.



Fig. 10. The strain distribution of the stiffened shell under the free-free boundary condition at (a) 550.1 Hz, (b) 1705.3 Hz, (c) 3245.2 Hz and (d) 4180.7 Hz.

Fig. 11. The first out-of-plane vibration mode of the shell (ka¼ 0, 926.6 Hz).
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4.1. Optimisation parameters and aims

The optimised body is the stiffened shell structure as studied in Section 3 and shown in Fig. 5. The geometric parameters of
the periodic structure are given above in.

Table 1, where H1, H2, H3, H4, H5 and H6 are the optimisation parameters. The selection and design of the optimisation
parameters are based on the above calculation and simulation.

This optimisation problem is a typically multi-objective optimisation problem. Three main aims were set in this opti-
misation procedure. AimⅠ: the interested frequency range needs to be covered in the band gap. AimⅡ: the median frequencies
of the band gap and the desired frequency range are close. Aim Ⅲ: the minimum mass of the whole structure is obtained.
4.2. Optimisation algorithm (genetic algorithm)

Since all the parameters considered in the optimisation design influence and interact with one another, the optimisation
design needs to take into account the relations amongst the parameters and achieve the vibration isolation in a relatively
wide frequency range. Genetic algorithm was adopted for the optimisation design.

Genetic algorithms (GA) is an optimisation algorithms developed from the process of natural evolution and selection. It's
commonly used to generate high-quality solutions to optimise and search problems by relying on bio-inspired operators such
as mutation, crossover and selection [22]. With the random and global search characteristics, GA makes it almost impossible
to fall into local optimum. And there is no restrict of the derivative and continuity of optimisation function. It is appropriate to
deal with the multi-objective optimisation problem and may reduce the iteration times enormously. The flow chart of the
optimisation procedure is shown in Fig. 12.
4.3. Band-gap design

Considering the frequency range between the cruising and themaximum speed of the real aero-engine, the rotation speed
is between 77Hz and 88 Hz. The number of blades is 38. The blade passing frequency is equal to the rotation speed times
blade number, thus the desired band gap is expected to be between 2926Hz and 3344 Hz.

4.3.1. Optimisation parameters and objective function
Considering the manufacture errors, the allowable tolerance in engineering and the qualitative change in the band gaps,

the variations of the geometric parameters H1, H2 and H3 were assumed to be 0.5 times as large as the shell thickness. The
Fig. 12. The flow chart of the optimisation procedure by GA.



Table 2
The optimised parameters of the casing.

H1 (ts1/tc) H2 (ts2/tc) H3 (hs1,2/tc) H4 (R/tc) H5 (Axial period) H6 (circumferential period)

3 5.5 9.5 170 5 21
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ranges of the six optimisation parameters H1, H2, H3, H4, H5 and H6 are at 1e6, 1e6, 1e15, 150e200, 5e8 and 20e24
respectively. The thickness of the shell, tc, and the axial length of the casing, L, were fixed at 5mm and 677.22mm,
respectively.

By introducing the weight coefficientWi (i¼ 1, 2), we can convert this multi-objective optimisation problem into a single-
objective optimisation problem. The subscript i indicate aim 1 and aim 2. Thus the objective function is:

Obj ¼ W1½ðx1 � lowerÞ þ ðupper � x2Þ� þW2 � abs½ðx1 þ x2Þ � ðupper þ lowerÞ� (17)

where x1 and x2 are the lower and upper bound respectively; upper and lower are the desired frequencies. In this case,
upper¼ 3344 Hz and lower¼ 2926 Hz.

To improve the calculation efficiency and accuracy, the objective function only includes the first two optimisation aims
(Aim Ⅰand Aim Ⅱ). A set of results is obtained and defined as result_0. However Aim Ⅰ can not be satisfied completely as the
shortage of the optimisation algorithm. Considering AimⅠ is more critical and obligatory for the practical engineering cases,
further optimisation is still needed to search within the result_0. Consequently the restriction conditions: x1�lower and
x2�upper need to be added, and then the result_1 can be reached. Finally, the aim of minimizing the whole mass of the
structure (Aim Ⅲ) is achieved by searching amongst the result_1 following the above optimisation procedure, and the final
result can own the minimal mass among the result_1.

4.3.2. Results
The optimised results are shown in Table 2. The corresponding band-gap frequency range is 2657.2e3666.1 Hz, which

covers the frequency range of interest, i.e. 2926e3344 Hz. The minimum mass of the casing given by the optimisation al-
gorithm is 437.3 kg.
4.4. Simulation and verification

The FE model of the cantilever fan casing structure was realized using 8400 SHELL181 elements in ANSYS. The free-
clamped boundary was applied to the structure. The frequency response of the right side of the structure is given in
Fig. 13.

The bar in Fig. 13 indicates the theoretical band-gap frequency range, which is clearly captured by two large
vibration-amplitude drops. An interesting phenomenon that can be observed in Fig. 13 is that one peak appears in the
FR curve at 3300 Hz. The free modal analysis indicates that it corresponds to the natural frequency of the structure.
The existence of band gaps can not eliminate the resonance, i.e. resonance in the band gaps is inevitable. In spite of
this, the band gap can still degrade the influence due to the resonance, and the degradation extent increases with
more periods.
Fig. 13. The FR curve of the optimised casing.
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5. Conclusions

An improvedWave FEMmethod has been put forward by considering the boundary and the internal nodes accurately in a
cylindrical coordinate and by introducing a wave selection idea. Therefore the vibration band-gap characteristics of the
stiffened periodic shell can be achieved efficiently. The optimisation method GA was adopted for the design of a fan casing.
The configuration parameters are optimised so that the wave does not span across the concerned broad frequency range. The
vibration isolation method developed in this article can provide a reference for the practical application on the optimisation
design of the stiffened shells.
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